
2018|uTrade

Creating new strategy using
API version 2.0

2018 | uTrade

Company Overview

uTrade Solutions is a fintech company providing enterprise solutions including Blockchain
driven clearing, multi-asset trading platform, algorithms and risk management solutions to
financial institutions and their end customers. Our product suite includes the following:
 Multi Asset Trading platform: with full suite application and html5 web-based front

ends (Including admin functions, risk management, order management, connectivity to
exchanges etc.).
o It supports trading for all listed products including equities, futures, options,

commodities, as well as for non-listed products like FX, CFDs, etc.
 Low latency algorithmic trading platform: Used in exchange co-location environment

or in client data centres/cloud for fastest access to markets to execute arbitrage,
market making, execution, excel based, quant driven, api based proprietary and various
other strategies across all asset classes. It also provide FIX APIs for DMA and Algos
access

 Open Source, Risk Management, and Custom Solutions: We also customise and open
source some modules of our technologies.

2018 | uTrade

 Blockchain Solutions: uTrade is driving new solutions enabled by the latest
technologies including Blockchain. We have built Clearing and KYC focused Blockchain
platforms. We are also partnering with clients to guide and provide Blockchain
Solutions for their desired workflows. Our existing products include:
o uClear – uClear is a Blockchain based clearing solution for real time clearing and

settlement. It allows for any exchange-matching engine to clear trades post
execution through a private blockchain, across equities and futures, with real time
risk management, reporting and other financial transfer instructions.

o KYChain - KYChain is a KYC platform with mobile and web driven interface for
clients to upload their documents and share securely with any institutions,
primarily for KYC purpose. Institutions can also contribute back to the data of the
users based on permissions.

We have built our products from ground-up with a modular architecture in order to
effectively address current and rapidly evolving user needs. We have also filed for 6
patents in India and 1 patent in US/UK to lead innovation in the trading life cycle.
Please watch our video demos at www.youtube.com/utradesolutions
In 2013-2014, uTrade Solutions was recognized as a leading innovative fin-tech start-up
by:

http://www.youtube.com/utradesolutions

2018 | uTrade

Design front end using
uTrade design toolbox.
Choose and model
parameters according to
your needs. Choose
label name wisely as
same will be used to get
values from backend.

Front-end Design

2018 | uTrade

use linux command xxd -i <parameters_frontfile>,

This will convert text into embeddable code

create a function

extern "c" std::string getFrontEndDesign();

to return this design

Download front end script and embed in

backend strategy code

2018 | uTrade

unsigned char param_txt[] =

{

0x5b, 0x53, 0x59, 0x4d, 0x42, 0x4f, 0x4c, 0x5d, 0x0a,

0x53, 0x59, 0x4d, 0x42, 0x4f, 0x4c, 0x20, 0x4c, 0x45, 0x47, 0x31,

0x4e, 0x54, 0x36, 0x34, 0x0a, 0x4f, 0x72, 0x64, 0x65, 0x72, 0x20,

0x4d, 0x6f, 0x64, 0x65, 0x20, 0x31, 0x3d, 0x55, 0x43, 0x0a, 0x53,

0x59, 0x4d, 0x42, 0x4f, 0x4c, 0x20, 0x4c, 0x45, 0x47, 0x32, 0x3d,

0x55, 0x49, 0x4e, 0x54, 0x36, 0x34, 0x0a, 0x73, 0x74, 0x20, 0x42,

0x69, 0x64, 0x2f, 0x41, 0x73, 0x6b, 0x3a, 0x42, 0x65, 0x73, 0x74,

0x20, 0x41, 0x73, 0x6b, 0x2f, 0x0a, 0x53, 0x45, 0x50, 0x41, 0x52,

0x41, 0x54, 0x4f, 0x52, 0x3d, 0x31, 0x0a, 0x54, 0x69, 0x6d, 0x65,

0x72, 0x3d, 0x54, 0x52, 0x0a, 0x53, 0x70, 0x72, 0x65, 0x61, 0x64,

0x20, 0x54, 0x79, 0x70, 0x65, 0x3d, 0x52, 0x41, 0x44, 0x49, 0x4f,

0x3a, 0x64, 0x75, 0x63, 0x74, 0x3a, 0x41, 0x63, 0x74, 0x75, 0x61,

0x6c, 0x3a, 0x41, 0x63, 0x74, 0x75, 0x61, 0x6c, 0x0a, 0x53, 0x54,

0x43, 0x48, 0x3d, 0x31, 0x0a, 0x43, 0x68, 0x6b, 0x20, 0x53, 0x70,

0x72, 0x65, 0x61, 0x64, 0x3d, 0x42, 0x4f, 0x4f, 0x54, 0x52, 0x45,

0x54, 0x43, 0x48, 0x3d, 0x31, 0x0a, 0x42, 0x69, 0x64, 0x20, 0x44,

0x69, 0x66, 0x66, 0x3d, 0x42, 0x4f, 0x0a, 0x5b, 0x4f, 0x54, 0x48,

0x45, 0x52, 0x5d, 0x20, 0x20, 0x0a

};

unsigned int param_len_text = 425;

xxd- i params.txt

2018 | uTrade

extern "C“

std::string getFrontEndDesign()

{

const char param_txt[] =

{

0x5b, 0x53, 0x59, 0x4d, 0x42, 0x4f, 0x4c, 0x5d, 0x0a, 0x53,

0x59, 0x4d, 0x42, 0x4f, 0x4c, 0x20, 0x4c, 0x45, 0x47, 0x31,

0x3d, 0x55, 0x49, 0x4e, 0x54, 0x36, 0x34, 0x0a, 0x4f, 0x72,

0x64, 0x65, 0x72, 0x20, 0x4d, 0x6f, 0x64, 0x65, 0x20, 0x31,

0x3d, 0x55, 0x43, 0x48, 0x41, 0x52, 0x0a, 0x53, 0x59, 0x4d,

0x42, 0x4f, 0x4c, 0x20, 0x4c, 0x45, 0x47, 0x32, 0x3d, 0x55,

0x49, 0x4e, 0x54, 0x36, 0x34, 0x0a, 0x4f, 0x72, 0x64, 0x65,

0x72, 0x20, 0x4d, 0x6f, 0x64, 0x65, 0x20, 0x32, 0x3d, 0x55,

0x43, 0x48, 0x41, 0x52, 0x0a, 0x23, 0x53, 0x59, 0x4d, 0x42,

0x4f, 0x4c, 0x20, 0x4c, 0x45, 0x47, 0x33, 0x3d, 0x55, 0x0a

};

unsigned int param_text_len = 425 ;

return std::string(param_txt,param_txt_len);

}

Corresponding embedded code

2018 | uTrade

create a function

extern "C“

void * getDriver(void * params)

this function will be the entry point for your strategy. Here you create an object of your
strategy class and start your algo

Sample getDriver function
extern "C“

void *getDriver(void *params)

{

API2::StrategyParameters *sgParams =

API2::StrategyParameters*)params;

SampleStrategy context(sgParams);

return context.reqStartAlgo(true); // Market event required

//return context.reqStartAlgo(false); // Market event not

required

}

Create getDriver function

2018 | uTrade

All strategy need to be derived from API2::SGContext class This class has
predefined functionality to send order and receive market data & virtual functions
which user can override.

Sample Strategy Class
class SampleStrategy : public API2::SGContext

{

public :

Context(API2::StrategyParameters *params);

//overridden void

OnCMDModifyStrategy(API2::AbstractUserParams*); private:

SINGNED_LONG _symbolid;

//will be set by front end parameters

API2::SGCommon::InstrumentOrderId *_instrumentOrderId;

//used to uniquely identify order

API2::COMMON::Instrument * _instrument;

//used in market data subscription , sending orders

// and p&l calculation

};

Creating Strategy Class

2018 | uTrade

-> setup log file using Base class constructor

-> read front end parameters

SampleStrategy(API2::StrategyParameters *params)):

API2::SGContext(params, "SampleStrategy") // Sample strategy

log file created

{

API2::UserParams *frontendParams = (API2::UserParams *)

params->getInfo();

//Parameters received from frontend

//reading parameters

if(frontendParams->getValue("SYMBOL LEG1",_symbolid) !=

API2::UserParamsError_OK)

{

std::cout<<"Error in getting SYMBOL LEG1"<<std::endl;

}

}

Things to do in Constructor

2018 | uTrade

_instrument = createNewInstrument(

//sending by reference will be set internally_symbolId,

//will be used for creating instrument true,

//need to register for feed or not false);

//feed type false for TBT feed or true for snapshot feed

Receiving Market Event
if ReqStartAlgo funtion is with market event enabled then feed event will be
received by overriding

onMarketDataEvent

void SampleStrategy::onMarketDataEvent(UNSIGNED_LONG symbolid)

{

std::cout<<"Symbol id Market Data “

<<symbolid

<<std::endl;

API2::COMMON::MktData *mkData = reqQryUpdateMarketData(symbolid);

mkData->dump();

}

Subscribing Market Order and Setting
up Instrument

2018 | uTrade

API2::SingleOrder *order;

API2::DATA_TYPES::RiskStatus riskStatus =

API2::CONSTANTS::RSP_RiskStatus_MAX;

order = createNewOrder(_instrument, <QTY>, <Revealed QTY>,

API2::CONSTANTS::CMD_OrderMode_BUY,

API2::CONSTANTS::CMD_OrderType_LIMIT,

API2::CONSTANTS::CMD_OrderValidity_DAY,

API2::CONSTANTS::CMD_ProductType_DELIVERY,

<PRICE>);_instrumentOrderId = NULL:

if(! reqNewSingleOrder(riskStatus,_instrument,_order,

_instrumentOrderId))

//_instrumentOrderId is used to uniquely identify an order

{

//error in sending order

//riskstatus variable will have error code store in it , describing

the problem.

}

else

{

//order sent out successfully

}

Sending Orders

2018 | uTrade

SGContext class has many virtual functions such as
onNewConfirmed

onCanceled

onReplaced

onReplaceRejected

onCancelRejected

onNewReject

onFilled

onPartialFill

they need to be overridden to capture confirmations such as

void SampleStrategy::onConfirmed(API2::orderConfirmation

&confirmation, API2::COMMON::InstrumentOrderId *orderId)

{

if(orderId == _instrumentOrderId)

{

//confirmation received from exchange //do something

according to your logic

}

}

Receiving Confirmations

info@utradesolutions.com
uTrade Solutions Private Ltd.

Disclaimer: This presentation is intended for sharing the business idea, product presentation,
and exploring a partnership opportunity. No content and the ideas presented for the new
venture hereby maybe re-used, re-distributed or discussed outside of the organization where
it is presented (without the prior content of the author of this presentation). None of the
ideas for financial trading technology presented in these slides maybe copied or shared with
the operations of existing or upcoming companies operating in this market segment. The
information shall not be distributed or used by any person or entity in any jurisdiction or
countries were such distribution or use would be contrary to the applicable laws or
Regulations. It is advised that prior to acting upon this presentation, independent
consultation / advise may be obtained and necessary due diligence, investigation etc. may be
done at your end. You may also contact us directly for any questions or clarifications. All
statements regarding the future are subject to inherent risks and uncertainties, and many
factors may lead to actual profits or losses & developments deviating substantially from what
has been expressed or implied in such statements.

